If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-785x-750=0
a = 1; b = -785; c = -750;
Δ = b2-4ac
Δ = -7852-4·1·(-750)
Δ = 619225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{619225}=\sqrt{25*24769}=\sqrt{25}*\sqrt{24769}=5\sqrt{24769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-785)-5\sqrt{24769}}{2*1}=\frac{785-5\sqrt{24769}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-785)+5\sqrt{24769}}{2*1}=\frac{785+5\sqrt{24769}}{2} $
| 2{-5.8+x}=14.2 | | 2-(-2,5+x)=1-0,5x | | 14.2=2{-5.8+t} | | 2x+2+4x=11+7x | | (x/12)^60=0 | | 2a+2=3a+1 | | 8x-18=7x+7 | | 7x=4x+14 | | (4x-1)^2-(4x+1)^2=2x^2 | | 4=3*(x/x) | | 5+7x=10x-4 | | x+60=2x-10 | | -2x^2+(4x-1)^2-(4x+1)^2=0 | | 7x+14x=100 | | 12x^2+4x-320=0 | | 2a+2=3a+3 | | 4/x=3/x | | 4(x-x)/(x-x)=(x+x)(x-x)/(x-x) | | (3^2x-3)-(3^x-2)=24 | | x(x-x)/(x-x)=(x+x)(x-x)/(x-x) | | 7x-650=20x | | x^2-5x-138=0 | | 0.5^(1.5x)=0 | | 20x+650=7x | | (4x-1)^2-(4x+1)2=2x°2 | | 3,84+x=2,75 | | 5=x*0 | | X/2+3x/8=63 | | 2^2x-3-33.2^2+4=0 | | (x-1)*(-3)=-x+1 | | 5y+2y+5y+5y=180 | | 1,0475*1,0475x=2 |